Abstract

It has been suggested that the embryonic microenvironment can control the survival and the transformed phenotype of tumour cells. Here, we addressed the hypothesis that the murine embryonic microenvironment can induce the differentiation of human tumour cells. To examine such interactions, we injected human leukaemic cells into preimplantation murine blastocysts at embryonic day 3.5 of gestation (E3.5). Microinjection of human KG-1 myeloid leukaemia cells and primary human acute myeloid leukaemia (AML) cells led to the generation of chimaeric embryos and adults. We observed that in E12.5 murine embryos, KG-1 cells were preferentially detected in yolk sac and peripheral blood, while primary AML cells mainly seeded the aorta gonad mesonephros region of chimaeric embryos. Analysis of the donor contribution in 15 different adult tissues showed that progeny of primary AML cells seeded to various haematopoietic and nonhaematopoietic tissues. Chimaeric embryos and adults showed no apparent tumour formation. Furthermore, analysis of chimaeric E12.5 embryos revealed that the progeny of human KG-1 cells activated erythroid-specific human globin and glycophorin A expression. In summary, our data indicate that human AML cells activate markers of erythroid differentiation after injection into early murine embryos.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call