Abstract

We studied changes in the chlorophyll (Chl) fluorescence components in chilling-stressed sweet potato (Ipomoea batatas L. Lam) cv. Tainung 57 (TN57, chilling-tolerant) and cv. Tainung 66 (TN66, chilling-susceptible). Plants under 12-h photoperiod and 400 µmol m-2 s-1 irradiance at 24/20 °C (day/night) were treated by a 5-d chilling period at 7/7 °C. Compared to TN66, TN57 exhibited a significantly greater basic Chl fluorescence (F0), maximum fluorescence (Fm), maximum fluorescence yield during actinic irradiation (Fm' ), and the quantum efficiency of electron transport through photosystem 2, PS2 (ΦPS2). Chilling stress resulted in decrease in the potential efficiency of PS2 (Fv/Fm), ΦPS2, non-photochemical fluorescence quenching (NPQ), non-photochemical quenching (qN), and the occurrence of chilling injury in TN66. Chilling increased the likelihood of photoinhibition, characterized by a decline in the Chl fluorescence of both cultivars, and photoinhibition during low temperature stress generally occurred more rapidly in TN66.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call