Abstract

BackgroundThis research compared accelerometry (ACC)-derived and muscle electromyography (EMG)-based estimates of physical activity (PA) and sedentary time in typical PA tasks and during the daily lives of children.MethodsData was included from two exploratory studies. In Study I, 6–7-year-old children (n = 11, 64% girls) were assessed for eight PA tasks (walking, stair negotiation, climbing, crawling, swinging, balancing, trampoline jumping and a game of tag). In Study II, 7–9-year-old children (n = 14, 38% girls) were assessed for six PA tasks (walking, sitting, static squat, single leg hops, jump for height and standing long jump), and daily PA during one day with and one day without structured exercise. Quadriceps and hamstring muscle activity and inactivity using EMG shorts and acceleration by waist-mounted accelerometer were simultaneously measured and classified as sedentary, light, moderate and vigorous activity. Data from ACC was further analyzed using five different published cut-off points and varying time windows (1−60 s) for comparison with EMG.ResultsIn the PA tasks ACC counts and EMG amplitude showed marked differences in swinging, trampoline jumping, crawling, static squat, single leg hops, standing long jump and jump for height, the difference being over 170% when signals were normalized to that during walking. Furthermore, in walking, swinging, trampoline jumping, stair negotiation and crawling ACC classified over 60% of the time as vigorous-intensity activity, while EMG indicated primarily light- and moderate-intensity activities. During both days with and without exercise, ACC resulted in greater proportion of light activity (p < 0.01) and smaller proportion of moderate activity compared to EMG (p < 0.05). The choice of cut-off points and epoch length in ACC analysis influenced the classification of PA level and sedentary time. In the analysis of daily activities the cut-off points by Evenson et al. (2008) with epochs of 7.5 s and 15 s yielded the smallest difference (less than 10% of recording time at each intensity) against EMG-derived PA levels.DiscussionThis research provides novel insight on muscle activity and thereby on neuromuscular loading of major locomotor muscles during normal daily activities of children. While EMG and ACC provided similar estimates of sedentary time in 13 typical PA tasks, duration of light, moderate and vigorous PA varied considerably between the methods especially during walking, stair negotiation, crawling, swinging and trampoline jumping. Evenson et al.’s (2008) cut-off points with ≤15 s epoch provided similar classification of PA than EMG during daily life. Compared to impacts recorded using ACC, EMG can provide understanding on children’s neuromuscular loading during motor tasks that is useful when studying effects of PA interventions on, and development of, motor competence and coordination.

Highlights

  • A physically active childhood enhances a physically active lifestyle over a life span (Telama et al, 2014)

  • In order to compare ACC counts and EMG amplitude, both were presented relative to normal walking, where ACC corresponded to an average of 1,218 counts (SD 362, range 678–2,033)

  • Muscle EMG activity was emphasised over ACC counts during crawling, static squat, single leg hops, standing long jump and jump for height, while ACC values were emphasised over EMG during swinging and trampoline jumping

Read more

Summary

Introduction

A physically active childhood enhances a physically active lifestyle over a life span (Telama et al, 2014). In Study I, 6–7-year-old children (n = 11, 64% girls) were assessed for eight PA tasks (walking, stair negotiation, climbing, crawling, swinging, balancing, trampoline jumping and a game of tag). In walking, swinging, trampoline jumping, stair negotiation and crawling ACC classified over 60% of the time as vigorous-intensity activity, while EMG indicated primarily light- and moderate-intensity activities. During both days with and without exercise, ACC resulted in greater proportion of light activity (p < 0.01) and smaller proportion of moderate activity compared to EMG (p < 0.05). While EMG and ACC provided similar estimates of sedentary time in

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.