Abstract

When children learn to count and acquire a symbolic system for representing numbers, they map these symbols onto a preexisting system involving approximate nonsymbolic representations of quantity. Little is known about this mapping process, how it develops, and its role in the performance of formal mathematics. Using a novel task to assess children’s mapping ability, we show that children can map in both directions between symbolic and nonsymbolic numerical representations and that this ability develops between 6 and 8 years of age. Moreover, we reveal that children’s mapping ability is related to their achievement on tests of school mathematics over and above the variance accounted for by standard symbolic and nonsymbolic numerical tasks. These findings support the proposal that underlying nonsymbolic representations play a role in children’s mathematical development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call