Abstract

This study examined the role of sensorimotor system noise in the organization of the force output of the thumb and index finger and the coordination between the two digits in an isometric pinch grip force task as a function of age (6, 8, 10, 18-22 years), feedback condition (with and without visual feedback information), and force level (5, 15, 25, and 35% of maximal voluntary force. With increases in age under the visual feedback conditions, the signal-to-noise ratio increased, the sequential structure of the force output signals became more irregular, the degree of coherence between the digits at higher force levels was enhanced, and the digits exhibited a greater degree of coherence across the higher frequencies of the power spectrum at all force levels. However, these age differences were either minimized or eliminated under conditions without feedback. These findings show that the age-related performance differences in grip force variability are primarily due to more effective use of visual information rather than age differences in intrinsic sensorimotor noise.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.