Abstract

Context:Autism is a serious behavioral disorder among young children that now occurs at epidemic rates in developing countries like India. We have used tract-based spatial statistics (TBSS) of diffusion tensor imaging (DTI) measures to investigate the microstructure of primary neurocircuitry involved in autistic spectral disorders as compared to the typically developed children.Objective:To evaluate the various white matter tracts in Indian autistic children as compared to the controls using TBSS.Materials and Methods:Prospective, case-control, voxel-based, whole-brain DTI analysis using TBSS was performed. The study included 19 autistic children (mean age 8.7 years ± 3.84, 16 males and 3 females) and 34 controls (mean age 12.38 ± 3.76, all males). Fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD) values were used as outcome variables.Results:Compared to the control group, TBSS demonstrated multiple areas of markedly reduced FA involving multiple long white matter tracts, entire corpus callosum, bilateral posterior thalami, and bilateral optic tracts (OTs). Notably, there were no voxels where FA was significantly increased in the autism group. Increased RD was also noted in these regions, suggesting underlying myelination defect. The MD was elevated in many of the projections and association fibers and notably in the OTs. There were no significant changes in the AD in these regions, indicating no significant axonal injury. There was no significant correlation between the FA values and Childhood Autism Rating Scale.Conclusion:This is a first of a kind study evaluating DTI findings in autistic children in India. In our study, DTI has shown a significant fault with the underlying intricate brain wiring system in autism. OT abnormality is a novel finding and needs further research.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call