Abstract
There are now more violent conflicts globally than at any time in the past three decades, resulting in the largest forced displacement crisis ever recorded. Understanding at a granular level the well-being of refugees is essential to inform successful poverty alleviation strategies and unlock refugees’ potential. As forced displacement can lead to a reorganization of a family’s structure, we use a structural model in combination with data from refugee camps and surrounding communities in Uganda and Kenya to estimate the allocation of consumption within families. We compute poverty rates that account for intra-household inequality, finding that refugee children can be up to three times more likely to be poor than adults. So, refugee children not only suffer from the experience of forced migration, but also from potentially low nutrition and a disproportionately higher poverty risk. Using a supervised machine learning algorithm, we show that a small set of observable traits, such as a child’s age, household composition, and access to sanitation and clean water, predict child poverty in refugee settlements and surrounding communities remarkably well, often better than per-capita household expenditure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.