Abstract
Supplementary motor area (SMA) syndrome is a typically transient condition resulting from damage to the medial premotor cortex. The exact mechanism of recovery remains unknown but is traditionally described as a process involving functional compensation by the contralateral SMA through corpus callosal fibers. The purpose of this case study is to highlight a distinct extracallosal mechanism of functional recovery from an SMA syndrome in a patient with agenesis of the corpus callosum (ACC). We present the clinical presentation and perioperative functional neuroimaging features of a 16-year-old patient with complete ACC who exhibited recovery from an SMA syndrome resulting from surgical resection of a right-sided low-grade glioma. Preoperative fMRI revealed anatomically concordant activation areas during finger and toe tapping tasks bilaterally. Three months after surgery, the patient had fully recovered, and a repeat fMRI revealed shift of the majority of the left toe tapping area from the expected contralateral hemisphere to the ipsilateral left paracentral lobule and SMA. The fMRI signal remodeling observed in this acallosal patient suggests that within-hemisphere plasticity of the healthy hemisphere may constitute an alternative critical process in SMA syndrome resolution and challenges the traditional view that transcallosal fibers are necessary for functional recovery.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.