Abstract

In this study, a mathematical model that may depict the dynamic transmission of the Chikungunya virus within a specific population has been examined. Various differential operators were considered, ranging from classical to nonlocal operators. We added a stochastic component to each instance and used the Lipschitz and linear growth criteria to illustrate the existence and uniqueness of the solutions. The most recent numerical method with Newton polynomial (are related symmetrical) interpolations was used to solve each problem numerically using MATLAB. There are some presented numerical simulations which are compared with the Lipschitz and linear growth properties. This new research work emphasizes how the Chikungunya virus model is formulated using fractional ODEs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.