Abstract

A physics-informed neural network (PINN) is a powerful tool for solving differential equations in solid and fluid mechanics. However, it suffers from singularly perturbed boundary-layer problems in which there exist sharp changes caused by a small perturbation parameter multiplying the highest-order derivatives. In this paper, we introduce Chien’s composite expansion method into PINNs, and propose a novel architecture for the PINNs, namely, the Chien-PINN (C-PINN) method. This novel PINN method is validated by singularly perturbed differential equations, and successfully solves the well-known thin plate bending problems. In particular, no cumbersome matching conditions are needed for the C-PINN method, compared with the previous studies based on matched asymptotic expansions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.