Abstract

The transporter breast cancer resistance protein (BCRP, encoded by ABCG2) influences the bioavailability and elimination of numerous substrate drugs during clinical therapy. The xenobiotic-sensing nuclear receptors pregnane X receptor (PXR) and constitutive androstane receptor (CAR) reportedly regulate functional expression of BCRP in mammalian species. However, it is unknown whether chicken xenobiotic receptor (CXR) regulates the expression and activity of BCRP. This study aimed to investigate the role of CXR in regulation of BCRP in chicken using in vitro and in vivo models. CXR was expressed in the main drug-metabolizing tissues of chickens, and its expression correlated well with that of the prototypical target genes CYP2H1 and ABCG2. BCRP expression was upregulated, and transporter activity was increased, in chicken primary hepatocytes exposed to the CXR agonist metyrapone. Using RNA interference and ectopic expression techniques to manipulate the cellular CXR status, we confirmed that ABCG2 gene regulation depended on CXR. In vivo experiments showed that metyrapone induced BCRP in the liver, kidney, duodenum, and jejunum of chickens. Coadministration of metyrapone significantly changed the pharmacokinetic behavior of orally administered florfenicol (substrate of chicken BCRP), with a lower Cmax (4.62 vs. 7.35 µg/mL, P < 0.01) and AUC0-t (15.83 vs. 24.18 h·mg/L, P < 0.01) as well as a higher Tmax (0.96 vs. 0.79 h, P < 0.05) and Cl/F (0.13 vs. 0.08 L/h/kg, P < 0.05). Together, our data suggest that CXR is involved in regulation of BCRP, and consequently, coadministration of a CXR agonist can affect the pharmacokinetic behavior of an orally administered BCRP substrate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.