Abstract

This study aims to investigate the protective effects of four chicken muscle-derived peptides Val-Arg-Pro (VRP), Leu-Lys-Tyr (LKY), Val-Arg-Tyr (VRY), and Val-Val-His-Pro-Lys-Glu-Ser-Phe [VVHPKESF (V-F)] on tumor necrosis factor alpha (TNFα)-induced endothelial inflammation and oxidative stress in human vascular endothelial EA.hy926 cells. Inflammation and oxidative stress are induced in EA.hy926 cells by TNFα (10ngmL-1 ) treatment for different periods of time. Inflammatory proteins and signaling molecules including inducible nitric oxide synthase, intracellular cell adhesion molecule-1, vascular cell adhesion molecule-1 (VCAM-1), cyclooxygenase 2 (COX2), nuclear factor kappa B (NF-κB), mitogen-activated protein kinases (MAPKs), and TNFα receptor 1 (TNFR1) are measured by qRT-PCR or western blotting; soluble TNFR1 level and nicotinamide adenine dinucleotide phosphate NADPH)oxidase activity are determined by Elisa kits; superoxide is measured by dihydroethidium staining. Only V-F treatment inhibits the expression of VCAM-1 and COX2, via suppressing NF-κB and p38 MAPK signaling, respectively, while reduced oxidative stress via the inhibition of NADPH oxidase activity; V-F treatment attenuates both gene and protein expressions of TNFR1. V-F treatment ameliorates TNFα-induced endothelial inflammation and oxidative stress likely via the inhibition of TNFR1 signaling, suggesting its potential as a functional food ingredient or nutraceutical in the prevention and treatment of hypertension and cardiovascular diseases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call