Abstract

Individual differences in nutrient sensitivity have been suggested to be related with differences in stress sensitivity. Here we used layer hens divergently selected for high and low specific antibody responses to SRBC (i.e., low line hens and high line hens), reflecting a genetically based differential immune competence. The parental line of these hens was randomly bred as the control line and was used as well. Recently, we showed that these selection lines differ in their stress reactivity; the low line birds show a higher hypothalamic-pituitary-adrenal (HPA) axis reactivity. To examine maternal effects and neonatal nutritional exposure on nutrient sensitivity, we studied 2 subsequent generations. This also created the opportunity to examine egg production in these birds. The 3 lines were fed 2 different nutritionally complete layer feeds for a period of 22 wk in the first generation. The second generation was fed from hatch with the experimental diets. At several time intervals, parameters reflecting humoral immunity were determined such as specific antibody to Newcastle disease and infectious bursal disease vaccines; levels of natural antibodies binding lipopolysaccharide, lipoteichoic acid, and keyhole limpet hemocyanin; and classical and alternative complement activity. The most pronounced dietary-induced effects were found in the low line birds of the first generation: specific antibody titers to Newcastle disease vaccine were significantly elevated by 1 of the 2 diets. In the second generation, significant differences were found in lipoteichoic acid natural antibodies of the control and low line hens. At the end of the observation period of egg parameters, a significant difference in egg weight was found in birds of the high line. Our results suggest that nutritional differences have immunomodulatory effects on innate and adaptive humoral immune parameters in birds with high HPA axis reactivity and affect egg production in birds with low HPA axis reactivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call