Abstract
BackgroundThe Wnt/β-catenin signaling pathway plays crucial roles in embryonic development and in maintenance of organs and tissues in adults. Chibby (Cby) is an evolutionarily conserved molecule that physically interacts with the key downstream coactivator β-catenin and represses its transcriptional activation potential. Although Cby harbors a predicted coiled-coil motif in the C-terminal region, its molecular nature and functional importance remain largely unexplored.ResultsHere we report that Cby forms a stable complex with itself. Alanine substitutions of two or more of four critical leucine residues within the C-terminal heptad repeats completely eliminate the Cby-Cby interaction. The Cby oligomer predominantly exists as a homodimer. Furthermore, we found that dimerization-deficient Cby mutants still retain the ability to bind to β-catenin and to repress β-catenin-dependent gene activation. More importantly, Cby homodimerization is required for its efficient interaction with the nuclear import receptor importin-α and subsequent nuclear translocation.ConclusionOur comprehensive mutational analysis of the Cby coiled-coil domain reveals that the four heptad leucine residues play an essential role in mediating Cby homodimerization. Although monomeric Cby is sufficient to bind to β-catenin and block β-catenin-mediated transcriptional activation, homodimer formation of Cby is indispensable for its efficient nuclear import.
Highlights
The Wnt/β-catenin signaling pathway plays crucial roles in embryonic development and in maintenance of organs and tissues in adults
In the absence of a Wnt ligand, cytoplasmic β-catenin becomes phosphorylated by casein kinase 1 (CK1) and glycogen synthase kinase 3 (GSK3) in a complex containing the tumor suppressors Axin and Adenomatous polyposis coli (APC), and is targeted for ubiquitin-mediated proteasomal degradation [13,14]
Using a variety of Cby point mutants generated by site-directed mutagenesis, we found that four leucine residues in the C-terminal heptad-repeat region are responsible for Cby homodimerization
Summary
The Wnt/β-catenin signaling pathway plays crucial roles in embryonic development and in maintenance of organs and tissues in adults. Intracellular signaling activated by the Wnt family of secreted cysteine-rich glycoproteins is crucial for embryonic development, stem cell self-renewal and adult homeostasis [1,2,3]. The Wnt/β-catenin pathway has gained recognition as an enticing molecular target for cancer therapeutics [9,10]. Β-catenin accumulates in the cytoplasm and translocates into the nucleus where it forms a complex with the T-cell factor/ lymphoid enhancer factor (Tcf/Lef) family of transcription factors, leading to activation of target genes [17,18]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.