Abstract

Background: Chia seed is an ancient seed with the richest plant source of α-linolenic acid, which has been demonstrated to improve metabolic syndrome associated risk factors. Under high fat diet (HFD) condition, the senescence-accelerated mouse-prone 8 (SAMP8) mice demonstrated worsen Alzheimer’s disease (AD) related pathology compared to low fat diet fed SAMP8 mice. Objective: To explore whether chia seed supplementation might improve cognitive impairment under aging and metabolic stress via high fat diet (HFD) fed SAMP8 mice as a model. Design: SAMP8 mice and senescence-accelerated mouse-resistant 1 (SAMR1) were randomized into 4 groups, i.e., SAMR1 low fat diet group (SAMR1-LFD), SAMP8-HFD and SAMP8-HFD group supplemented with 10% chia seed (SAMP8-HFD+Chia). At the end of the intervention, cognitive function was measured via Morris water maze (MWM) test. Hippocampus and parietal cortex were dissected for further analysis to measure key markers involved AD pathology including Aβ, tau and neuro-inflammation. Results: During navigation trials of MWM test, mice in SAMP8-LFD group demonstrated impaired learning ability compared to SAMR1-LFD group, and chia seed had no effect on learning and memory ability for HFD fed SAMP8 mice. As for Alzheimer’s disease (AD) related pathology, chia seed not only increased α-secretase such as ADAM10 and insulin degrading enzyme (IDE), but also increased β-secretase including beta-secretase 1 (BACE1) and cathepsin B, with an overall effects of elevation in the hippocampal Aβ42 level; chia seed slightly reduced p-Tauser404 in the hippocampus; while an elevation in neuro-inflammation with the activation of glial fibrillary acidic protein (GFAP) and Ibα-1 were observed post chia seed supplementation. Conclusions: Chia seed supplementation did not improve cognitive impairment via MWM in HFD fed SAMP8 mice. This might be associated with that chia seed increased key enzymes involved both in non-amyloidogenic and amyloidogenic pathways, and neuro-inflammation. Future studies are necessary to confirm our present study.

Highlights

  • Alzheimer’s disease (AD), as a progressive neurodegenerative disorder, is the main cause of dementia for the elderly

  • Our results suggested that during navigation trials, mice in senescence-accelerated mouse-prone 8 (SAMP8)-LFD group demonstrated impaired learning ability compared to senescence-accelerated mouse-resistant 1 (SAMR1)-LFD group, while high fat diet (HFD) utilized in our present model could not

  • Our results suggested that during navigation trials, mice in SAMP8-LFD group demonstrated impaired learning ability compared to SAMR1-LFD group, while HFD utilized in our worsen the impaired learning ability,the andimpaired chia seed has noability, effect on and memory ability present model could not worsen learning andlearning chia seed has no effect on for and memory for HFD

Read more

Summary

Introduction

Alzheimer’s disease (AD), as a progressive neurodegenerative disorder, is the main cause of dementia for the elderly. Chia seed is an ancient seed with the richest plant source of α-linolenic acid, which has been demonstrated to improve metabolic syndrome associated risk factors. Alzheimer’s disease (AD) related pathology compared to low fat diet fed SAMP8 mice. Objective: To explore whether chia seed supplementation might improve cognitive impairment under aging and metabolic stress via high fat diet (HFD) fed SAMP8 mice as a model. As for Alzheimer’s disease (AD) related pathology, chia seed increased α-secretase such as ADAM10 and insulin degrading enzyme (IDE), and increased β-secretase including beta-secretase 1 (BACE1) and cathepsin B, with an overall effects of elevation in the hippocampal Aβ42 level; chia seed slightly reduced p-Tauser404 in the hippocampus; while an elevation in neuro-inflammation with the activation of glial fibrillary acidic protein (GFAP) and

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.