Abstract

The aim of this study was to identify relevant biomarkers for the prognosis of glioma considering current molecular changes such as IDH mutation and 1p19q deletion. Gene expression profiling was performed using the TaqMan Low Density Array and hierarchical clustering using 96 selected genes in 64 patients with newly diagnosed glioma. The expression dataset was validated on a large independent cohort from The Cancer Genome Atlas (TCGA) database. A differential expression panel of 26 genes discriminated two prognostic groups regardless of grade and molecular groups of tumors: Patients having a poor prognosis with a median overall survival (OS) of 23.0 ± 9.6 months (group A) and patients having a good prognosis with a median OS of 115.0 ± 6.6 months (group B) (p = 0.007). Hierarchical clustering of the glioma TCGA cohort supported the prognostic value of these 26 genes (p < 0.0001). Among these genes, CHI3L1 and NTRK2 were identified as factors that can be associated with IDH status and 1p/19q co-deletion to distinguish between prognostic groups of glioma from the TCGA cohort. Therefore, CHI3L1 associated with NTRK2 seemed to be able to provide new information on glioma prognosis.

Highlights

  • Gliomas are the most common primary brain tumors of the central nervous system.Overall age-adjusted incidence rates vary from 4.67 to 5.73 per 100,000 persons [1]

  • The analysis was performed in radiotherapy- and/or chemotherapy-naive glioma surgical specimens

  • One way to refine the management of glioma is to improve prognosis by examining molecular information, which can be more precise than histology alone [20,21]

Read more

Summary

Introduction

Gliomas are the most common primary brain tumors of the central nervous system.Overall age-adjusted incidence rates vary from 4.67 to 5.73 per 100,000 persons [1]. Cancers 2019, 11, 544 contribution of this classification, patients with tumors that have the same histologic appearance may still have different outcomes due to molecular heterogeneity [3]. One way to improve the clinical management of gliomas is to identify new molecular biomarkers that distinguish more homogeneous subgroups of patients regardless of histological tumor characteristics, which could further refine the prognostic value of the current biomarkers, 1p19q chromosome arm loss and IDH mutation. These biomarkers could improve our knowledge of glioma biology

Objectives
Methods
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.