Abstract

Quantitative structure–activity relationship models are used in toxicology to predict the effects of organic compounds on aquatic organisms. Common filter feature selection methods use correlation statistics to rank features, but this approach considers only the correlation between a single feature and the response variable and does not take into account feature redundancy. Although the minimal redundancy maximal relevance approach considers the redundancy among features, direct removal of the redundant features may result in loss of prediction accuracy, and cross-validation of training sets to select an optimal subset of features is time-consuming. In this paper, we describe the development of a feature selection method, Chi-MIC-share, which can terminate feature selection automatically and is based on an improved maximal information coefficient and a redundant allocation strategy. We validated Chi-MIC-share using three environmental toxicology datasets and a support vector regression model. The results show that Chi-MIC-share is more accurate than other feature selection methods. We also performed a significance test on the model and analyzed the single-factor effects of the reserved descriptors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.