Abstract
Background: Radiologists used chest radiographs to detect coronavirus disease 2019 (COVID-19) in patients and determine the severity levels. The COVID-19 cases were grouped into five classes, each receiving different treatments. An intelligent system is needed to advance the detection and identify vector features of X-ray images with a quality that is too poor to be read by radiologists. Deep learning is an intelligent system that can be used in this case. Objective: The current study compares the classification and accuracy of detection methods with two, three dan five classes. Methods: Deep learning can classify visual geometry group VGG 19 architectures with 1000 classes. The classification of the five classes' convolutional neural network (CNN) underwent model validation with a confusion matrix to produce accuracy and class values. The system could then diagnose patients’ examinations by radiology specialists. Results: The results of the five-class method showed 98% accuracy, the three-class method showed 99.99%, and the two-class showed 99.99%. Conclusion: It can be concluded that using the VGG 19 model is effective. This system can classify and diagnose viruses in patients to assist radiologists by reading the images. Keywords: COVID-19, CNN, Classification, Deep Learning
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Information Systems Engineering and Business Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.