Abstract

Image enhancement algorithms are commonly used to increase the contrast and visual quality of low-dose x-ray images. This paper proposes an automated enhancement method using soft fuzzy sets with a new decision-making scheme based on Dempster-Shafer theory of evidence for the visual interpretation of pneumonia malformation in low-dose x-ray images, called as XEFSDS. The XEFSDS model first generates an original source x-ray image into a complementary image, then each original and complement image is applied to the characterized image object and background areas of fuzzy space. The S-function is utilized to define fuzzy soft sets for the classification of gray level ambiguity in both images, and hence a decision criterion via Dempster-Shafer approach and fuzzy interval has been adapted to discriminate uncertainties on the pixel intensity and the spatial information. Modified membership grade operations have been performed on each object/background area, and Werner’s AND/OR operator (an aggregation operator) has been utilized to build a new membership function from two modified membership functions. Finally, an enhanced image is obtained from the new membership function via defuzzification. Experiments on different pneumonia X-ray images demonstrate that the XEFSDS scheme produces better results than the existing methods. To show the advantages of the XEFSDS scheme, we have executed a segmentation based examination on enhanced image for the detection of pneumonia malformation as well as abnormal lobe (lobar pneumonia) or bronchopneumonia.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call