Abstract
BackgroundRecent reports of patients with severe, late-stage COVID-19 ARDS with reduced respiratory system compliance described paradoxical decreases in plateau pressure and increases in respiratory system compliance in response to anterior chest wall loading. We aimed to assess the effect of chest wall loading during supine and prone position in ill patients with COVID-19-related ARDS and to investigate the effect of a low or normal baseline respiratory system compliance on the findings.MethodsThis is a single-center, prospective, cohort study in the intensive care unit of a COVID-19 referral center. Consecutive mechanically ventilated, critically ill patients with COVID-19-related ARDS were enrolled and classified as higher (≥ 40 ml/cmH2O) or lower respiratory system compliance (< 40 ml/cmH2O). The study included four steps, each lasting 6 h: Step 1, supine position, Step 2, 10-kg continuous chest wall compression (supine + weight), Step 3, prone position, Step 4, 10-kg continuous chest wall compression (prone + weight). The mechanical properties of the respiratory system, gas exchange and alveolar dead space were measured at the end of each step.ResultsTotally, 40 patients were enrolled. In the whole cohort, neither oxygenation nor respiratory system compliance changed between supine and supine + weight; both increased during prone positioning and were unaffected by chest wall loading in the prone position. Alveolar dead space was unchanged during all the steps. In 16 patients with reduced compliance, PaO2/FiO2 significantly increased from supine to supine + weight and further with prone and prone + weight (107 ± 15.4 vs. 120 ± 18.5 vs. 146 ± 27.0 vs. 159 ± 30.4, respectively; p < 0.001); alveolar dead space decreased from both supine and prone position after chest wall loading, and respiratory system compliance significantly increased from supine to supine + weight and from prone to prone + weight (23.9 ± 3.5 vs. 30.9 ± 5.7 and 31.1 ± 5.7 vs. 37.8 ± 8.7 ml/cmH2O, p < 0.001). The improvement was higher the lower the baseline compliance.ConclusionsUnlike prone positioning, chest wall loading had no effects on respiratory system compliance, gas exchange or alveolar dead space in an unselected cohort of critically ill patients with C-ARDS. Only patients with a low respiratory system compliance experienced an improvement, with a higher response the lower the baseline compliance.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.