Abstract

Physicians use auscultation as a standard method of thoracic examination: it is simple, reliable, non-invasive, and widely accepted. Artificial intelligence (AI) is the new frontier of thoracic examination as it makes it possible to integrate all available data (clinical, instrumental, laboratory, functional), allowing for objective assessments, precise diagnoses, and even the phenotypical characterization of lung diseases. Increasing the sensitivity and specificity of examinations helps provide tailored diagnostic and therapeutic indications, which also take into account the patient's clinical history and comorbidities. Several clinical studies, mainly conducted in children, have shown a good concordance between traditional and AI-assisted auscultation in detecting fibrotic diseases. On the other hand, the use of AI for the diagnosis of obstructive pulmonary disease is still debated as it gave inconsistent results when detecting certain types of lung noises, such as wet and dry crackles. Therefore, the application of AI in clinical practice needs further investigation. In particular, the pilot case report aims to address the use of this technology in restrictive lung disease, which in this specific case is pulmonary sarcoidosis. In the case we present, data integration allowed us to make the right diagnosis, avoid invasive procedures, and reduce the costs for the national health system; we show that integrating technologies can improve the diagnosis of restrictive lung disease. Randomized controlled trials will be needed to confirm the conclusions of this preliminary work.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call