Abstract

BackgroundOut-of-hospital cardiac arrest is a life threatening situation where the first person performing cardiopulmonary resuscitation (CPR) most often is a bystander without medical training. Some existing smartphone apps can call the emergency number and provide for example global positioning system (GPS) location like Hjelp 113-GPS App by the Norwegian air ambulance. We propose to extend functionality of such apps by using the built in camera in a smartphone to capture video of the CPR performed, primarily to estimate the duration and rate of the chest compression executed, if any.MethodsAll calculations are done in real time, and both the caller and the dispatcher will receive the compression rate feedback when detected. The proposed algorithm is based on finding a dynamic region of interest in the video frames, and thereafter evaluating the power spectral density by computing the fast fourier transform over sliding windows. The power of the dominating frequencies is compared to the power of the frequency area of interest. The system is tested on different persons, male and female, in different scenarios addressing target compression rates, background disturbances, compression with mouth-to-mouth ventilation, various background illuminations and phone placements. All tests were done on a recording Laerdal manikin, providing true compression rates for comparison.ResultsOverall, the algorithm is seen to be promising, and it manages a number of disturbances and light situations. For target rates at 110 cpm, as recommended during CPR, the mean error in compression rate (Standard dev. over tests in parentheses) is 3.6 (0.8) for short hair bystanders, and 8.7 (6.0) including medium and long haired bystanders.ConclusionsThe presented method shows that it is feasible to detect the compression rate of chest compressions performed by a bystander by placing the smartphone close to the patient, and using the built-in camera combined with a video processing algorithm performed real-time on the device.

Highlights

  • Out-of-hospital cardiac arrest is a life threatening situation where the first person performing cardiopulmonary resuscitation (CPR) most often is a bystander without medical training

  • Like PulsePoint, are carried by CPR volunteers, who will receive a notification from the dispatcher in case of nearby emergency and help the volunteer reach the victim [9], and can locate automated external defibrillators (AEDs) which can be dispatched to the scene

  • In this paper, we present a method where the camera in a smartphone is activated by an emergency app, to provide the caller and dispatcher with information on the compression performance of the bystander

Read more

Summary

Introduction

Out-of-hospital cardiac arrest is a life threatening situation where the first person performing cardiopulmonary resuscitation (CPR) most often is a bystander without medical training. Some existing smartphone apps can call the emergency number and provide for example global positioning system (GPS) location like Hjelp 113-GPS App by the Norwegian air ambulance. Most of these cardiac arrest situations will happen without the presence of medical professionals. In case of OHCA, time to cardiopulmonary resuscitation (CPR) should be as short as possible and should continue with high quality until return of spontanous circulation. Some provide GPS location and hands-free and simple dialing of the emergency number, like Hjelp 113-GPS App by the Norwegian air ambulance and Emergency+ available on App store and Google play. The dispatcher has no objective information about how CPR is performed [10]

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.