Abstract

We prove a result of Chern–Weil type for canonically metrized line bundles on one-parameter families of smooth complex curves. Our result generalizes a result due to J. I. Burgos Gil, J. Kramer, and U. Kühn that deals with a line bundle of Jacobi forms on the universal elliptic curve over the modular curve with full level structure, equipped with the Petersson metric. Our main tool, as in the work by Burgos Gil, Kramer, and Kühn, is the notion of a b-divisor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.