Abstract

In this work, we obtain existence criteria for Chern-Ricci flows on noncompact manifolds. We generalize a result by Tossati-Wienkove on Chern-Ricci flows to noncompact manifolds and at the same time generalize a result for Kahler-Ricci flows by Lott-Zhang to Chern-Ricci flows. Using the existence results, we prove that any complete noncollapsed Kahler metric with nonnegative bisectional curvature on a noncompact complex manifold can be deformed to a complete Kahler metric with nonnegative and bounded bisectional curvature which will have maximal volume growth if the initial metric has maximal volume. Combining this result with the result of Chau-Tam, we give another proof that a complete noncompact Kahler manifold with nonnegative bisectional curvature (not necessarily bounded) and maximal volume growth is biholomorphic to the complex Euclidean space. This last result has already been proved by Gang Liu recently using other methods. This last result is partial confirmation of a uniformization conjecture of Yau.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.