Abstract
The ν=1/2+1/2 quantum Hall bilayer has been previsously modeled using Chern-Simons-RPA-Eliashberg (CSRPAE) theory to describe pairing between the two layers. However, these approaches are troubled by a number of divergences and ambiguities. By using a "modified" RPA approximation to account for mass renormalization, we can work in a limit where the cyclotron frequency is taken to infinity, effectively projecting to a single Landau level. This, surprisingly, controls the important divergences and removes ambiguities found in prior attempts at CSRPAE. Examining BCS pairing of composite fermions we find that the angular momentum channel l=+1 dominates for all distances d between layers and at all frequency scales. Examining BCS pairing of composite fermion electrons in one layer with composite fermion holes in the opposite layer, we find the l=0 pairing channel dominates for all d and all frequencies. The strength of the pairing in these two different descriptions of the same phase of matter is found to be almost identical. This agrees well with our understanding that these are two different but dual descriptions of the same phase of matter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.