Abstract

We define Chern-Schwartz-MacPherson (CSM) cycles of an arbitrary matroid. These are balanced weighted fans supported on the skeleta of the corresponding Bergman fan. In the case that the matroid arises from a complex hyperplane arrangement A, we show that these cycles represent the CSM class of the complement of A. We also prove that for any matroid, the degrees of its CSM cycles are given by the coefficients of (a shift of) the reduced characteristic polynomial, and that CSM cycles are valuations under matroid polytope subdivisions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.