Abstract

In topology, one can define in several ways the Chern class of a vector bundle over a certain topological space (Chern [2], Hirzebruch [7], Milnor [9], Steenrod [15]). In algebraic geometry, Grothendieck has defined the Chern class of a vector bundle over a non-singular variety. Furthermore, in the case of differentiable vector bundles, one knows that the set of differentiable cross-sections to a bundle forms a finitely generated projective module over the ring of differentiable functions on the base manifold. This gives a one to one correspondence between the set of vector bundles and the set of f.g.-projective modules (Milnor [10]). Applying Grauert’s theorems (Grauert [5]), one can prove that the same statement holds for holomorphic vector bundles over a Stein manifold.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call