Abstract
The effects arising from accelerated and decelerated motion of a point charge inside a medium are studied. The motion is manifestly relativistic and may be produced by a constant uniform electric field. It is shown that in addition to the bremsstrahlung and Cherenkov shock waves, the electromagnetic shock wave arises when the charge particle velocity coincides with the light velocity in the medium. For the accelerated motion this shock wave forming an indivisible entity with the Cherenkov shock wave arrives after the arrival of the bremsstrahlung shock wave. For the decelerated motion the above shock wave detaches from the charge at the moment when its velocity coincides with the light velocity in the medium. This wave existing even after termination of the charge motion of the charge propagates with the light velocity in the medium. It has the same singularity as the Cherenkov shock and is more singular than the bremsstrahlung shock wave. The space-time regions, where these shock waves exist, and conditions under which they can be observed are determined.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.