Abstract

A Cherenkov maser amplifier (CMA) for generating high-power levels over a wide frequency range is proposed, analyzed, and numerically simulated. The CMA is a wideband amplifier consisting of an annular relativistic electron beam in a cylindrical waveguide, having an inner conductor and outer layer of dielectric material all enclosed by an outer conductor. The interaction between the hybrid TEM/TM subluminal mode of the waveguide and the relativistic electron beam leads to amplification over a wide range of input frequencies in the gigahertz regime. The interaction is analyzed and simulated in the linear and nonlinear regimes. We show that conversion efficiencies can be enhanced by spatially tapering the dielectric waveguide. In addition, by premodulating the electron beam, efficiencies can be further enhanced and saturation distances reduced. Conversion efficiencies greater than 25% have been simulated by premodulating the electron beam and/or spatially tapering the dielectric waveguide over distances of a few meters. Simulation examples indicate that the ultrawideband CMA configuration operating in the gigahertz regime can generate power levels in the gigawatt range, employing electron beams in the multi-kiloampere and low megaelectronvolt range.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call