Abstract
Abstract: The rise in the usage of Twitter for the exclamation of the problems worldwide and also as a ‘review system,’ where the customers can directly hold an entity responsible in front of the public by tweeting and tagging them, gives them immense power and counts towards being an advantage for researchers to analyze such data that can be scraped and used through APIs for a variety of purposes. Through this research, our motive is to analyze the 2021 Chennai floods with data sourced from twitter to understand the public sentiment during the 14-day span. The same is achieved with the help of Tweepy to authenticate data extraction from Twitter and TextBlob, for the classification of sentiment tags - positive, negative, and neutral. The result of this study focuses on the visualization of our findings, with various charts and metrics indicating the sentiment of the tweets we have scraped and analyzed. Keywords: Sentiment Analysis, WordCloud, Subjectivity, Polarity, Chennai Floods
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal for Research in Applied Science and Engineering Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.