Abstract

A Gram-stain-positive, strictly aerobic, creamy-white colored, endospore-forming and non-motile rods strain, designated as strain 2205SS18-9T, was isolated from a marine sponge, Axinella sp. collected from Seopseom Island, Republic of Korea. Optimal growth of strain 2205SS18-9T was observed at 25-30°C, pH 6.5-7.0, and in the presence of 3.0% (w/v) NaCl. Cells were oxidase-positive and catalase-negative. Negative for nitrate reduction and indole production. Phylogenetic analyses based on the 16S rRNA gene and whole-genome sequences revealed that strain 2205SS18-9T formed a distinct phyletic lineage in the genus Chengkuizengella, and it was most closely related to Chengkuizengella marina YPA3-1-1T and Chengkuizengella sediminis J15A17T with 97.1 and 96.6% 16S rRNA gene sequence similarities, respectively. The average nucleotide identity and digital DNA-DNA hybridization values between strain 2205SS18-9T and Chengkuizengella marina YPA3-1-1T were 79.0 and 21.6%, respectively. The genomic DNA G + C content was 34.1%. The genome harbors a number of host-adhesion and transporter genes, suggested that strain 2205SS18-9T may interact with its sponge host as a symbiont. Menaquinone-7 was the sole isoprenoid quinone and antieiso-C15:0 (28.5%), iso-C16:0 (25.8%), C16:1 ω7c alcohol (15.0%), and iso-C15:0 (11.2%) were detected as the major fatty acids. Polar lipids included diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, two unidentified aminophospholipids, and an unidentified lipid. The cell-wall peptidoglycan contained lysine, alanine, glutamate, and aspartate. Based on these analyses, strain 2205SS18-9T represents a novel species of the genus Chengkuizengella, for which the name Chengkuizengella axinellae sp. nov. is proposed. The type strain is 2205SS18-9T (= KACC 23238T = LMG 33063T).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.