Abstract

In this paper, we show, by means of a linear scaling in time and coordinates, that the Chen system, given by x=a(y-x), y=(c-a)x+cy-xz, ż=-bz+xy, is, generically (c≠0), a special case of the Lorenz system. First, we infer that it is enough to consider two parameters to study its dynamics. Furthermore, we prove that there exists a homothetic transformation between the Chen and the Lorenz systems and, accordingly, all the dynamical behavior exhibited by the Chen system is present in the Lorenz system (since the former is a special case of the second). We illustrate our results relating Hopf bifurcations, periodic orbits, invariant surfaces, and chaotic attractors of both systems. Since there has been a large literature that has ignored this equivalence, the aim of this paper is to review and clarify this field. Unfortunately, a lot of the previous papers on the Chen system are unnecessary or incorrect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.