Abstract
The synthesis of well-defined H-shaped block copolymer based on the enzymatic ring-opening polymerization (eROP) and atom transfer radical polymerization (ATRP) is described. The dihydroxyl polycaprolactone (PCL) was synthesized by the eROP of e-caprolactone (e-CL) in the presence biocatalyst Novozyme 435 and initiator ethylene glycol. Subsequently, the resulting PCL was converted to tetrafunctional macroinitiator by the esterification with 2,2-dichloro acetyl chloride (DCAC). The H-shaped block copolymer was then synthesized by the ATRP of styrene. The polymers were characterized by NMR and GPC. Linear first-order kinetics, linearly increasing molecular weight with conversion, and low polydispersities observed from the ATRP of St showed that the polymerization was well controlled. (PSt)2-b-PCL-b-(PSt)2 block copolymers with varying molecular weight and controllable composition were obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.