Abstract
Chemotherapy to treat cancer is usually responsible for early ovarian follicle depletion. Ovarian damage induced by cancer treatments frequently results in infertility in surviving patients of childbearing age. Several fertility preservation techniques have been developed. Nowadays, oocyte or embryo cryopreservation with or without ovarian stimulation and cryopreservation of the ovarian cortex are the most commonly used. However, these methods may be difficult to implement in some situations, and subsequent use of the cryopreserved germ cells remains uncertain, with no guarantee of pregnancy. Improved knowledge of the molecular mechanisms and signaling pathways involved in chemotherapy-induced ovarian damage is therefore necessary, to develop new strategies for fertility preservation. The effects of various chemotherapies have been studied in animal models or in vitro on ovarian cultures, suggesting various mechanisms of gonadotoxicity. Today the challenge is to develop molecules and techniques to limit the negative impact of chemotherapy on the ovaries, using experimental models, especially in animals. In this review, the various theories concerning ovarian damage induced by chemotherapy will be reviewed and emerging approaches for ovarian protection will be explained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.