Abstract

Transforming growth factor (TGF-β) is a multifunctional cytokine that plays essential roles in regulating mammary gland development, morphogenesis, differentiation, and involution. TGF-β also regulates mammary gland homeostasis and prevents its transformation by prohibiting dysregulated cell cycle progression, and by inducing apoptosis; it also creates cell microenvironments that readily inhibit cell migration, invasion, and metastasis. Interestingly, while early-stage mammary tumors remain sensitive to the tumor suppressing activities of TGF-β, late-stage breast cancers become insensitive to the anticancer functions of this cytokine and instead rely upon TGF-β to drive disease and metastatic progression. This switch in TGF-β function is known as the "TGF-β Paradox" and represents the rationale for developing chemotherapies to inactivate the TGF-β pathway and its oncogenic functions in late-stage breast cancers. Here we outline the molecular mechanisms that manifest the "TGF-β Paradox" and discuss the challenges associated with the development and use of anti-TGF-β agents to treat breast cancer patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.