Abstract
CheY, a response regulator protein in bacterial chemotaxis, mediates swimming behaviour through interaction with the flagellar switch protein, FliM. In its active, phosphorylated state, CheY binds to the motor switch complex and induces a change from counterclockwise (CCW) to clockwise (CW) flagellar rotation. The conformation of a conserved aromatic residue, tyrosine 106, has been proposed to play an important role in this signalling process. Here, we show that an isoleucine to valine substitution in CheY at position 95--in close proximity to residue 106--results in an extremely CW, hyperactive phenotype that is dependent on phosphorylation. Further biochemical characterization of this mutant protein revealed phosphorylation and dephosphorylation rates that were indistinguishable from those of wild-type CheY. CheY95IV, however, exhibited an increased binding affinity to FliM. Taken together, these results show for the first time a correlation between enhanced switch binding and constitutive signalling in bacterial chemotaxis. Considering present structural information, we also propose possible models for the role of residue 95 in the mechanism of CheY signal transduction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.