Abstract

The repair of critical-sized bone defects remains a major concern in clinical care. Herein, a multifunctional hydrogel is rationally designed to synergistically photothermal antibacterial and potentiate bone regeneration via adding magnesium oxide nanoparticle and black phosphorus nanosheet (BPNS) into poly(vinyl alcohol)/chitosan hydrogel (PVA/CS-MgO-BPNS). Under the dual effect of near-infrared irradiation and CS intrinsic antibacterial properties, PVA/CS-MgO-BPNS hydrogel can kill more than 99.9% of Staphylococcus aureus and Escherichia coli. The released Mg ions stimulate the migration of mesenchymal stem cells (MSCs) to hydrogels and synergize with released phosphate to promote osteogenic differentiation. The PVA/CS-MgO-BPNS hydrogel also promotes calcium phosphate particle formation and therefore improves the biomineralization ability. Furthermore, the potential molecular mechanism of PVA/CS-MgO-BPNS to regulate MSCs migration and differentiation is through activating phosphoinositide 3-kinase (PI3K)-Akt signaling pathways through RNA-seq analysis. Finally, the PVA/CS-MgO-BPNS hydrogel could significantly promote endogenous bone tissue regeneration in the rat skull defect model. Taken together, this easy fabricated multifunctional hydrogel has good clinical applicability for the repair of large-scale bone defects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.