Abstract

The Papilionoideae, which comprises 503 genera and approximately 14,000 species, is the largest and most diverse subfamily of the Fabaceae family. In this subfamily, the Crotalarieae, Genisteae, Podalyrieae, Thermopsideae, Sophoreae and Euchresteae tribes are closely related by micro and macromolecular features, thus forming the genistoid clade. This group combines well-known genera, whereas other genera lack phytochemical and chemotaxonomic studies. Thus, this work aimed to characterize the special metabolites in these genera in order to define the chemical profile, the micromolecular markers and the chemical diversity, as well as to evaluate the group evolutionary trends. Flavonoids and alkaloids were identified as chemosystematic markers for the studied tribes due to high occurrence number and structural diversity. Among flavonoids, the flavones and isoflavones predominated. Low protection indexes of flavonoid hydroxyls by O-glycosylation or O-methylation were observed, whereas C-prenylation and C-glycosylation were frequent, mainly at C-6 and C-8 positions. The flavone/flavonol ratio shows the predominance of the flavones. Quinolizidine and piperidine alkaloids were present in most genera. Pyrrolizidine alkaloids were found in a few genera from Thermopsideae, Genisteae and Crotalarieae, which suggests a mechanism of adaptive convergence. Cluster analysis allowed separation of genera for each tribe by chemical similarities. The micromolecular trends of protection of flavonoid hydroxyls and alkaloid oxidation indicate the genistoid clade is through evolutionary transition, which is consistent with its phylogenetic position in the Papilionoideae subfamily.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.