Abstract
The Hare Indian Formation (HIF) is a late Eifelian to Givetian organic-rich mudstone constituting the lower portion of the Horn River Group (HRG), which has been minimally scrutinized in the literature. This paper proposes depositional environments and a sequence stratigraphic framework for the HIF. Using composition data collected via energy-dispersive X-ray fluorescence, geochemical proxies inform detrital input, silica source, and paleoredox conditions. Cross-plots and chemostratigraphic profiles of detritally sourced Al, Ti, and K and redox-sensitive Mo and V inform depositional and stratigraphic constraints. Silica proportions vary, indicating that sediment was derived from detrital and biogenic sources. Al, Ti, and K distributions increase upwards, showing increased continentally sourced minerals. Redox-sensitive metals are highest in the Bluefish Member (BM), suggesting intermittent euxinia. Based on the presence of continental and pelagic sediments, the sedimentary environment is interpreted as proximal- to mid-shelf. These proxies guide systems tract interpretations. Si and redox-sensitive metal concentrations peak higher in the BM, accompanied by lowered concentrations of Al, Ti, and K, suggesting a maximum flooding surface. At the top of the Prohibition and Bell Creek members, redox-sensitive enrichments are lower with higher concentrations of Al, Ti, and K, suggesting a maximum regressive surface. Transgression occurred during the initial deposition of the BM, followed by regression for the remainder of the HIF. The sedimentology of the HIF can be difficult to decipher; the use of chemostratigraphy supports its geological history (including sedimentation trends and a local record of relative sea level) using methods that may be applied to other fine-grained successions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.