Abstract

Abstract We investigate the Late Devonian Frasnian–Famennian extinction interval in western Alberta and south China to shed light on the palaeoecological and palaeoceanographic conditions that characterize this biotic crisis. Both the Lower and Upper Kellwasser events are documented in western Canada. Only the Upper Kellwasser event has been evaluated in south China. Our multiproxy geochemical approach reveals that these events are characterized by positive δ 13 C and δ 15 N excursions and increasing magnetic susceptibility (Canada/China) and increases in detrital (Al, Si, Ti, Zr), productivity (Cu, Ni, Zn) and redox (Mo, U, V) elemental proxies (Canada). We interpret these trends as part of a systemic palaeoecological shift associated with the development of widespread terrestrial forests and their alteration of chemical–mechanical weathering patterns. Increase in detrital proxies is thus interpreted as resulting from pedogenically driven weathering on the continents that nutrified epeiric and continental margin seas. High biological productivity led to eutrophication and development of suboxic to anoxic conditions during both events and probably euxinic conditions during the Upper Kellwasser event in western Canada. Positive δ 13 C excursions are the telltale signature of excessive carbon burial, while redox proxies and δ 15 N records indicate suboxic–anoxic denitrifying conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call