Abstract

Reporter-gene-based microbial biosensors have high potential for detecting small molecules, including heavy metal ions (HMIs), in a sensitive and selective manner by involving low costs. However, the sensitivity and dynamic range of the sensing mechanism are largely limited by the conventional culture environment that relies on the batch-type addition of the small molecules in nutrients and the subsequent genetic induction of sensing microbes. Here, we describe a high-throughput, chemostat-like microfluidic platform that can continuously supply both nutrients and inducers (HMIs) using microfabricated ratchet structures and a mixing microchannel network. We found that the microfluidic platform not only allowed microbial biosensors to be highly concentrated in a detection microchamber array but also enabled them to continuously grow and control synthetic genetic circuits in response to heavy metals. We also demonstrated that the combination of the platform and microbial biosensors enhanced the sensitivity for detecting divalent lead and cadmium ions by approximately three orders of magnitude relative to conventional batch-type methods. Because the platform is portable and only requires small sample volumes and fluorescent detection, the chemostat-like microfluidic platform in conjunction with microbial biosensors could be widely utilized to facilitate the specific and sensitive detection of molecular analytes on a chip.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.