Abstract

We developed an experimental in vitro model of dental plaque to assess the potential efficacy of antiplaque agents. The model used a chemostat, which provided a continuous source of 5 species of oral bacteria grown in an artificial "saliva-like" medium. This mixture was pumped through six flow cells, each containing two types of surfaces on which plaque formed and was subsequently measured. Formation of bacterial plaque on hydroxyapatite surfaces was assessed by measurement of the DNA and protein content of the plaque film. The amount of bacterial plaque formed on germanium surfaces was measured by attenuated total reflectance (ATR/FT-IR) spectroscopy. Plaque viability was also assessed by a fluorescent staining technique. The quantity of plaque formed on both types of surfaces gradually increased with the duration of flow (from 24 to 72 h) through the cells during a 72-hour experimental period. The flow cells were then pulsed with experimental treatment solutions for 30 s, twice daily. Parallel to results of human clinical studies, the model was capable of discriminating among water, a placebo mouthrinse, and an active antimicrobial mouthrinse formulation containing 0.03% triclosan. It therefore offers a valuable alternative to animal model testing and allows for more rapid evaluations under well-controlled experimental conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call