Abstract
Fundamental aspects of chemostat cultures are reviewed. Using yeast cultures as examples, it is shown that steady states in chemostats may be predicted quantitatively by combining the correct number of unstructured kinetic models with expressions for existing stoichiometric constraints. The necessary number of such kinetic models corresponds to the number of limiting substrates and increases with the number of different metabolic pathways available to the strain. This is demonstrated by an experimental comparison of yeast growth limited by glucose alone for which metabolism is oxidative, and growth doubly limited by both glucose and oxygen, which occurs according to an oxido-reductive metabolism. The steady state data for such experiments can in principle be predicted based on a minimal amount of information by a simple stoichiometric model. It represents the overall stoichiometry of growth by a superposition of a fully oxidative and a fully reductive growth reaction and uses the concept of “aerobicity” to characterize the relative importance of the two reactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.