Abstract

AbstractThe combination of varying aquatic habitats and flow regimes creates a complex stimulus environment from which sensory information can be extracted. Previous studies with crayfish in artificial stream settings have shown that altering the temporal and spatial structure of an odor plume modifies orientation behavior. Exposure to more temporally complex odor signals enables crayfish to locate food more efficiently. To link these studies to a more natural setting, we examined how odor signals are dispersed in 3 physically different habitats within the Maple River in Pellston, Michigan, USA, by simultaneously measuring flow patterns and odor plume characteristics. These microhabitats consisted of sections of the stream with gravel, transition (gravel and sand), or sand substrate. Flow measurements were taken using an Acoustic Doppler Velocimeter while simultaneous in situ odor plume measurements were made with an Epsilon electrochemical system. Flow had more turbulent energy in gravel and transition h...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.