Abstract

An antisense oligodeoxynucleotide (ODN) complementary to the first six codons of the Bcl-2 mRNA, G3139 (oblimersen sodium; Genasense), has been shown to downregulate Bcl-2 and produce responses in a variety of malignancies including drug-resistant lymphoma. Incubation of ex vivo purified plasma cells from patients with multiple myeloma (MM) with carboxyfluorescein (FAM)-labeled antisense ODNs resulted in a time- and dose-dependent uptake in the cytoplasm and nucleus. No major differences in uptake of Bcl-2 antisense ODNs were observed among patients' samples. Incubation of purified myeloma plasma cells with G3139, but not solvent or reverse polarity control ODNs, resulted in a reduction (>75%) of Bcl-2 mRNA levels after 2 and 4 days, as measured by Real-Time PCR. Treatment with G3139 led to a sequence-specific reduction of Bcl-2 protein levels within 4 days of exposure in 10 out of 11 clinical samples from patients with chemosensitive and multidrug-resistant disease, without significant reduction of alpha-Actin, Bax, Bcl-XL, or Mcl-1 proteins. This resulted in a significantly enhanced sensitivity of the myeloma tumor cells to dexamethasone or doxorubicin-induced apoptosis. G3139 can consistently enter myeloma cells, downregulate the expression of Bcl-2, and enhance the efficacy of myeloma therapy. These data support further clinical evaluation of G3139 therapy in multiple myeloma.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call