Abstract

The hypothesis that sympathoexcitatory neurones within the rostroventrolateral medulla (RVLM) may be chemosensitive was tested in chloralose-anaesthetized cats by artificial perfusion of the RVLM via the left vertebral artery. The baroreceptors and peripheral chemoreceptors were denervated by bilaterally dissecting the carotid sinus and vagus nerves. Either white ramus T3 (WR-T3) or the renal nerve was recorded to monitor sympathetic activity. Perfusion with saline or Ringer solution bubbled with CO2 (10%-100%) produced a rapid and pronounced increase in sympathetic activity and blood pressure. Solutions adjusted to the same pH (pH 5.2 for 100% CO2) with HCl resulted in a much weaker excitation. A linear relationship between PCO2 and sympathetic activity was demonstrated. During prolonged perfusion (90 s) sympathetic activity returned to the control level after initial excitation and fell below control levels when perfusion ceased. The sympathetic activity response to CO2-bubbled solutions was unaffected by blockade of synaptic input by microinjection of CoCl2 into the RVLM, whereas spontaneous sympathetic activity and the supraspinal somato-sympathetic reflex from intercostal nerve T4 to WR-T3 were markedly reduced. It is therefore concluded that sympathoexcitatory bulbospinal neurones in the RVLM are directly chemosensitive to changes in arterial PCO2 and pH.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call