Abstract

Neurons of the retrotrapezoid nucleus (RTN) and medullary serotonin (5-HT) neurons are both candidates for central CO2 /pH chemoreceptors, but it is not known how interactions between them influence their responses to pH. We found that RTN neurons in brain slices were stimulated by exogenous 5-HT and by heteroexchange release of endogenous 5-HT, and these responses were blocked by antagonists of 5-HT7 receptors. The pH response of RTN neurons in brain slices was markedly reduced by the same antagonists of 5-HT7 receptors. Similar results were obtained in dissociated, primary cell cultures prepared from the ventral medulla, where it was also found that the pH response of RTN neurons was blocked by preventing 5-HT synthesis and enhanced by blocking 5-HT reuptake. Exogenous 5-HT did not enable latent intrinsic RTN chemosensitivity. RTN neurons may play more of a role as relays from other central and peripheral chemoreceptors than as CO2 sensors. Phox2b-expressing neurons in the retrotrapezoid nucleus (RTN) and serotonin (5-HT) neurons in the medullary raphe have both been proposed to be central respiratory chemoreceptors. How interactions between these two sets of neurons influence their responses to acidosis is not known. Here we recorded from mouse Phox2b+ RTN neurons in brain slices, and found that their response to moderate hypercapnic acidosis (pH 7.4 to ∼7.2) was markedly reduced by antagonists of 5-HT7 receptors. RTN neurons were stimulated in response to heteroexchange release of 5-HT, indicating that RTN neurons are sensitive to endogenous 5-HT. This electrophysiological behaviour was replicated in primary, dissociated cell cultures containing 5-HT and RTN neurons grown together. In addition, pharmacological inhibition of 5-HT synthesis in culture reduced RTN neuron chemosensitivity, and blocking 5-HT reuptake enhanced chemosensitivity. The effect of 5-HT on RTN neuron chemosensitivity was not explained by a mechanism whereby activation of 5-HT7 receptors enables or potentiates intrinsic chemosensitivity of RTN neurons, as exogenous 5-HT did not enhance the pH response. The ventilatory response to inhaled CO2 of mice was markedly decreased in vivo after systemic treatment with ketanserin, an antagonist of 5-HT2 and 5-HT7 receptors. These data indicate that 5-HT and RTN neurons may interact synergistically in a way that enhances the respiratory chemoreceptor response. The primary role of RTN neurons may be as relays and amplifiers of the pH response from 5-HT neurons and other chemoreceptors rather than as pH sensors themselves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.