Abstract
Although recent advances in chemotherapy have markedly improved outcome of acute lymphoblastic leukemia (ALL), infantile ALL with MLL gene rearrangements (MLL+ALL) is refractory to chemotherapy. We have shown that specific cytokines FLT3 ligand and TGFβ1 both of which are produced from bone marrow stromal cells synergistically induced MLL+ALL cells into chemo-resistant quiescence, and that treatment of MLL+ALL cells with inhibitors against FLT3 and/or TGFβ1 receptor partially but significantly converts them toward chemo-sensitive. In the present study, we showed that MLL+ALL cells expressed CXCR4 and CXCR7, both receptors for the same chemokine stromal cell derived factor-1 (SDF-1), but their biological events were differentially regulated by the SDF-1/CXCR4 and SDF-1/CXCR7 axes and particularly exerted an opposite effect for determining chemo-sensitivity of MLL+ALL cells; enhancement via the SDF-1/CXCR4 axis vs. suppression via the SDF-1/CXCR7 axis. Because cytosine-arabinoside-induced apoptosis of MLL+ALL cells was inhibited by pretreatment with the CXCR4 inhibitor but rather accelerated by pretreatment with the CXCR7 inhibitor, an application of the CXCR7 inhibitor may become a good treatment option in future for MLL+ALL patients. MLL+ALL has a unique gene profile distinguishable from other types of ALL and AML, and should be investigated separately in responses to biological active agents including chemokine inhibitors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.