Abstract

We herein report the modular design and the synthesis of new molecular conjugates, which can combine a cell targeting function (ligand domain) with potential cytotoxic molecules (effector domain). The present approach utilizes a cyclic peptide template, Chemoselectively Addressable Template (CAT) as a key intermediate. These CAT molecules exhibit two independent and chemically addressable domains which permits the sequential and regioselective assembly of different ligand and/or effector domains. The attachment of various units to the template was achieved by the formation of iterative oxime bonds. The chemoselective oxime bonds were produced by the reaction of glyoxylyl aldehyde groups obtained from serine precursors. The process was further developed to prevent transoximation reactions. RAFT(c[-RGDfK-])4, a synthetic vector targeting the tumor-associated a alpha(V)beta3 integrin was prepared and coupled to either a cytotoxic peptide or oligonucleotide as an illustration of present approach. The potential application of this approach has been further demonstrated by the synthesis of high molecular weight compounds such as RAFT(c[-RGDfK-])16, a alpha(V)beta3-targeting ligand of high valency index.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call