Abstract

AbstractA convenient procedure for the chemoselective reduction of tertiary amides at room temperature in the presence of air and moisture using 1,3-diphenyldisiloxane (DPDS) is developed. The reaction conditions tolerate a significant number of functional groups including esters, nitriles, secondary amides, carbamates, sulfoxides, sulfones, sulfonyl fluorides, halogens, aryl-nitro groups, and arylamines. The conditions reported are the mildest to date and utilize EtOAc, a preferred solvent given its excellent safety profile and lower environmental impact. The ease of setup and broad chemoselectivity make this method attractive for organic synthesis, and the results further demonstrate the utility of DPDS as a selective reducing agent.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call